Mathematical Modeling of Infectious Disease

EpiModel is an R package that provides tools for simulating and analyzing mathematical models of infectious disease. Supported epidemic model classes include deterministic compartmental models, stochastic individual contact models, and stochastic network models. Disease types include SI, SIR, and SIS epidemics with and without demography, with utilities available for expansion to construct and simulate epidemic models of arbitrary complexity. The network model class is based on the statistical framework of temporal exponential random graph models (ERGMs) implementated in the Statnet suite of software for R.


The current software version is EpiModel v1.3.0, which may be downloaded from CRAN and installed in R through:

install.packages("EpiModel", dependencies = TRUE)
The development version of EpiModel is hosted on GitHub and may be installed via the devtools package by:

The software source code is available at the Github Repository. Users should submit bug reports and feature requests as issues there. The Releases page on the repository lists all the changes to the software over time.

Getting Started

Software Manual

The EpiModel Software Manual provides a list of all the main functions within the package, with syntax and examples. This documentation is also available within the package by consulting the help files.

A good place to start learning about EpiModel is the main vignette, currently under review, but available in pre-press form here!

EpiModel Web

For beginning EpiModel users and those new to mathematical modeling generally, EpiModel includes two web-based applications for simulating epidemics, using the Shiny framework in R. These applications are included within EpiModel for deterministic compartmental models (DCMs), stochastic individual contact models (ICMs), and stochastic network models. They are also hosted online at the links below.
DCMs    ICMs    Network

Next Steps

The Tutorials page provides introductions to running epidemic models of the three classes supported in EpiModel, and then expanding those models to address novel research questions. For greater theoretical background to fitting stochastic network models specifically, consult the Workshops page to view the materials from our in-person courses on using EpiModel.



The 2017 Network Modeling for Epidemics course will be offered from August 14 to 18 at the University of Washington in Seattle. ME is a 5-day short course at the University of Washington that provides an introduction to stochastic network models for infectious disease transmission dynamics, with a focus on empirically based modeling of HIV, STIs, and other close-contact infectious diseases. For more information on how to apply for the course, see our course website.